Learning ELM network weights using linear discriminant analysis

نویسندگان

  • Philip de Chazal
  • Jonathan Tapson
  • André van Schaik
چکیده

We present an alternative to the pseudo-inverse method for determining the hidden to output weight values for Extreme Learning Machines performing classification tasks. The method is based on linear discriminant analysis and provides Bayes optimal single point estimates for the weight values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees

The success of myoelectric pattern recognition (M-PR) mostly relies on the features extracted and classifier employed. This paper proposes and evaluates a fast classifier, extreme learning machine (ELM), to classify individual and combined finger movements on amputees and non-amputees. ELM is a single hidden layer feed-forward network (SLFN) that avoids iterative learning by determining input w...

متن کامل

Abstract Projecting a high dimensional feature into a low- dimensional feature without compromising the feature

Projecting a high dimensional feature into a lowdimensional feature without compromising the feature characteristic is a challenging task. This paper proposes a novel dimensionality reduction constituted from the integration of extreme learning machine (ELM) and spectral regression (SR). The ELM in the proposed method is built on the structure of the unsupervised ELM. The hidden layer weights a...

متن کامل

Discriminative clustering via extreme learning machine

Discriminative clustering is an unsupervised learning framework which introduces the discriminative learning rule of supervised classification into clustering. The underlying assumption is that a good partition (clustering) of the data should yield high discrimination, namely, the partitioned data can be easily classified by some classification algorithms. In this paper, we propose three discri...

متن کامل

Interpreting Extreme Learning Machine as an Approximation to an Infinite Neural Network

Extreme Learning Machine (ELM) is a neural network architecture in which hidden layer weights are randomly chosen and output layer weights determined analytically. We interpret ELM as an approximation to a network with infinite number of hidden units. The operation of the infinite network is captured by neural network kernel (NNK). We compare ELM and NNK both as part of a kernel method and in n...

متن کامل

Extreme Learning Machine with Local Connections

This paper is concerned with the sparsification of the input-hidden weights of ELM (Extreme Learning Machine). For ordinary feedforward neural networks, the sparsification is usually done by introducing certain regularization technique into the learning process of the network. But this strategy can not be applied for ELM, since the input-hidden weights of ELM are supposed to be randomly chosen ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1406.3100  شماره 

صفحات  -

تاریخ انتشار 2014